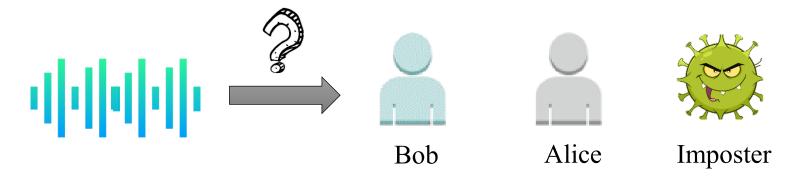
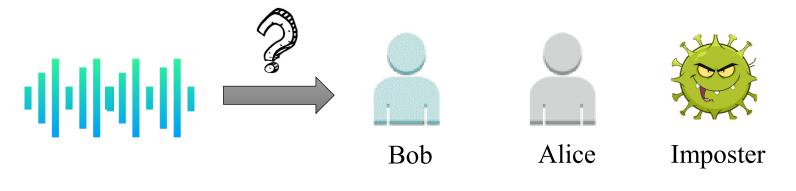
Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems

<u>Guangke Chen</u>, Sen Chen, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, Yang Liu

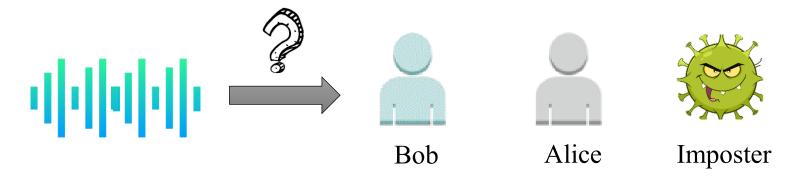
Guangke Chen (GuangkeChen@outlook.com)☑Fu Song(songfu@shanghaitech.edu.cn)

a.k.a, Voiceprint Recognition Systems



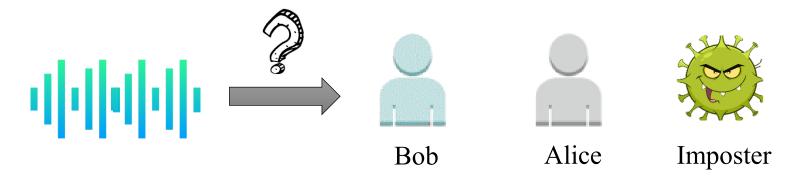


Ubiquitous Application



Ubiquitous Application

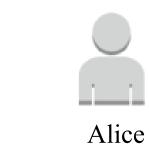
Voice assistant wake up



Ubiquitous Application

Voice assistant wake up

Personalized service on smart home



Imposter

Ubiquitous Application

Voice assistant wake up

Personalized service on smart home

Financial transaction

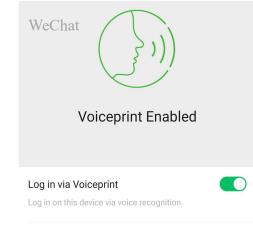
Imposter

Ubiquitous Application

Voice assistant wake up

Personalized service on smart home

Financial transaction



App log in

Financial transaction

WeChat	
Log in via Voiceprint Log in on this device via voice recognition.	
App log in	

Voice assistant wake up

Personalized service on smart home

Safety-critical scenario

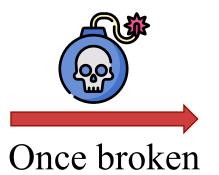
Financial transaction

WeChat	
Voiceprint Enabled	
Log in via Voiceprint Log in on this device via voice recognition.	
Log in on this device via voice recognition.	
App log in	

Voice assistant wake up

Personalized service on smart home

Safety-critical scenario



Voice assistant wake up

Personalized service

on smart home

Financial transaction

. . .

WeChat	
Voiceprint Enabled	
Log in via Voiceprint	
Log in on this device via voice recognition.	

App log in

Safety-critical scenario

Once broken

property damage reputation degrade sensitive information leak

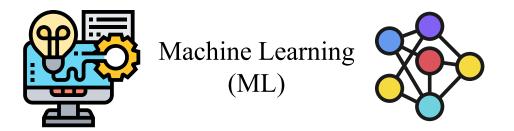
Financial transaction

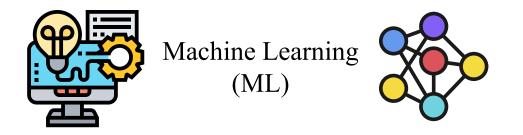
WeChat	
Log in via Voiceprint	
Log in on this device via voice recognition.	

Voice assistant wake up

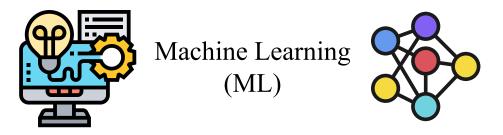
Personalized service on smart home

Security of SRSs!!!

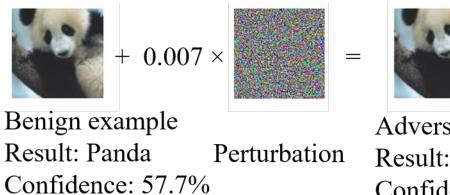




However, ML is **vulnerable** to adversarial examples

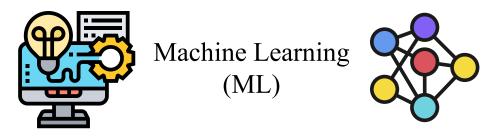


However, ML is **vulnerable** to adversarial examples



Adversarial example Result: Gibbon Confidence: 99.3%

Ian Goodfellow et al.

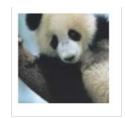


However, ML is vulnerable to adversarial examples

_

Benign example Result: Panda Perturbation Confidence: 57.7%

Ian Goodfellow et al.



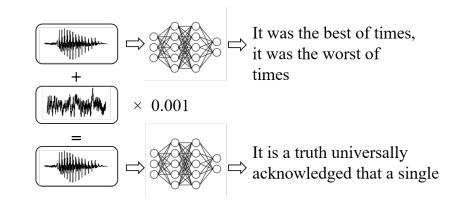
Adversarial example Result: Gibbon Confidence: 99.3%

Nicholas Carlini et al.

+ 0.007 \times

Benign exampleResult: PandaPerturbationConfidence: 57.7%

Adversarial example Result: Gibbon Confidence: 99.3%



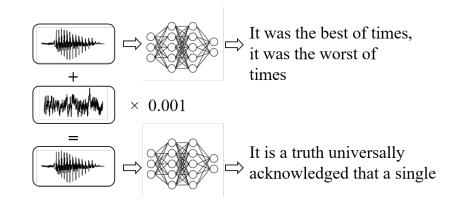
Is adversarial attack practical on SRSs?

+ 0.007 \times

Benign exampleResult: PandaPerturbationConfidence: 57.7%

FAKEB

Adversarial example Result: Gibbon Confidence: 99.3%

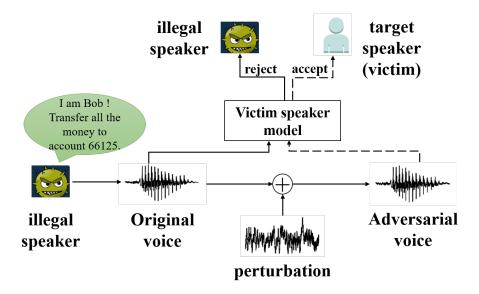


Is adversarial attack practical on SRSs ?

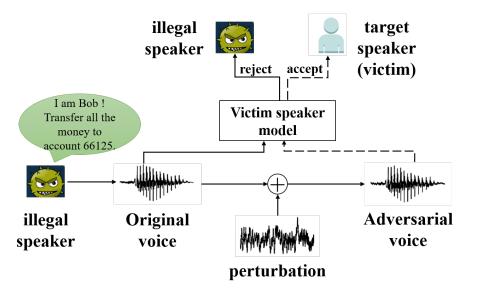
- Black-box
- Appliable to general SRS task
- Effective on commercial SRSs
- Effective in over-the-air attack

110

Attacker Goal: pass voice authentication; gain access to privilege

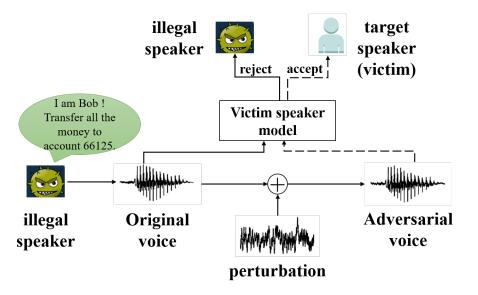


Attacker Goal: pass voice authentication; gain access to privilege

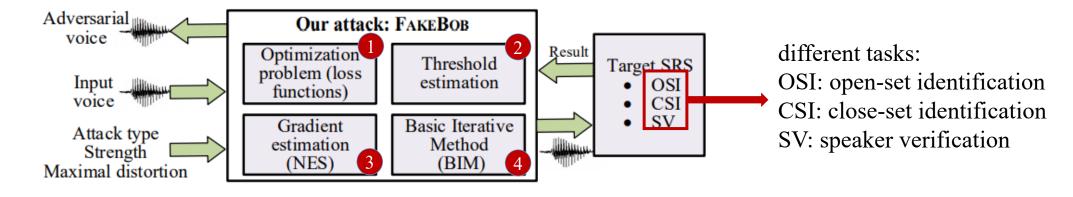


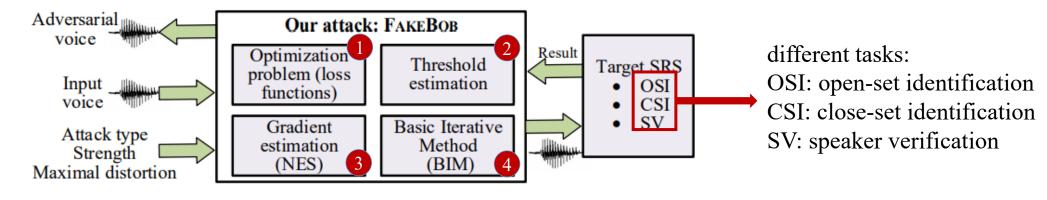
Attacker Capability: no information about model structure / parameter;

Attacker Goal: pass voice authentication; gain access to privilege

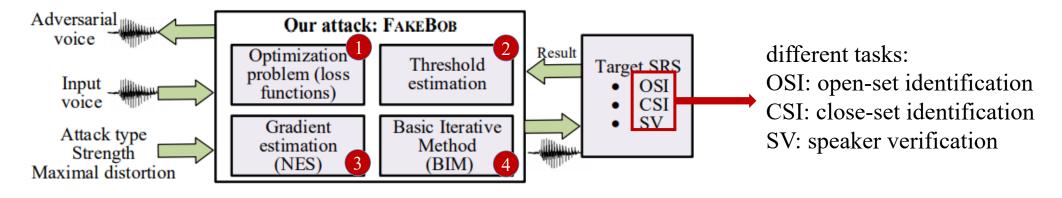


Attacker Capability: no information about model structure / parameter; limited to query the speak model of the victims

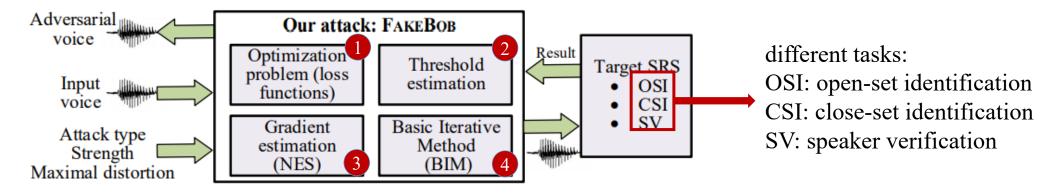




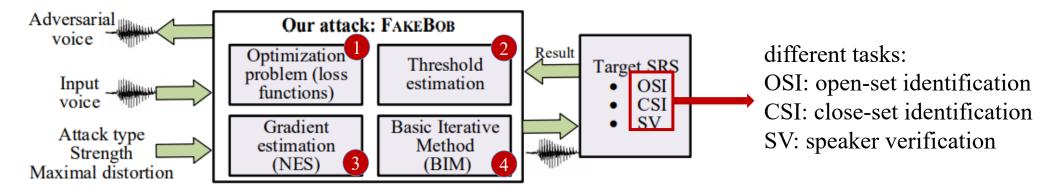
• Effective **loss function** design.



• Effective loss function design. Goal: $f(x) \le 0 \leftrightarrow$ attack succeeds



Effective loss function design. Goal: f(x) ≤ 0 ↔ attack succeeds
 Based on scoring and decision-making mechanism



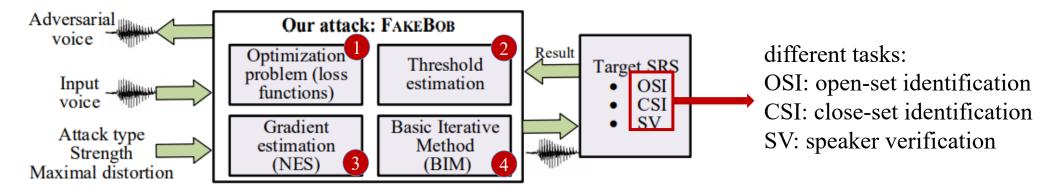
• Effective loss function design. Goal: $f(x) \le 0 \leftrightarrow$ attack succeeds Based on scoring and decision-making mechanism

e.g., for OSI
$$D(x) = \begin{cases} \operatorname{argmax}_{i \in G} [S(x)]_i, & \text{if } \max_{i \in G} [S(x)]_i \ge \theta; \\ \text{reject}, & \text{otherwise.} \end{cases}$$

S(x): scores

D(x): decision

 θ : threshold

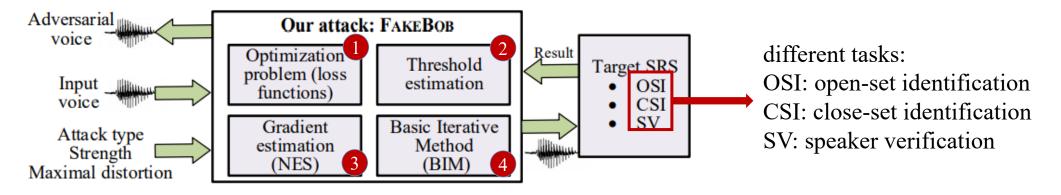


• Effective loss function design. Goal: $f(x) \le 0 \leftrightarrow$ attack succeeds Based on scoring and decision-making mechanism

e.g., for OSI

$$D(x) = \begin{cases} \underset{i \in G}{\operatorname{argmax}} [S(x)]_i, & \text{if } \underset{i \in G}{\max} [S(x)]_i \ge \theta \\ \text{reject}, & \text{otherwise.} \end{cases} \qquad \begin{array}{l} S(x): \text{ scores} \\ D(x): \text{ decision} \\ \theta: \text{ threshold} \end{cases}$$

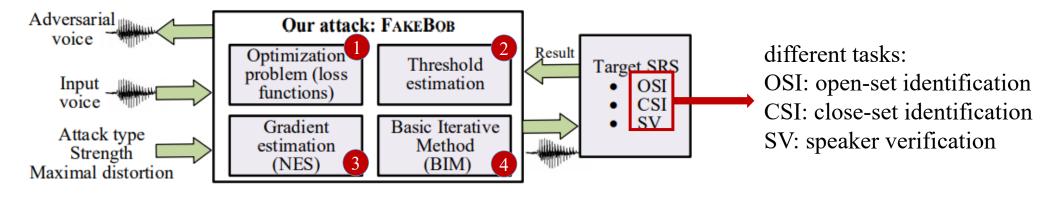
$$f(x) = \max\{\theta, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t$$



Effective loss function design. Goal: f(x) ≤ 0 ↔ attack succeeds Based on scoring and decision-making mechanism OSI: f(x) = max{θ, max[S(x)]_i} + κ - [S(x)]_t

Tailored for different SRSs tasks: CSI, SV, OSI

CSI:
$$f(x) = \max_{i \neq t} [S(x)]_i + \kappa - [S(x)]_t$$
 SV: $f(x) = \theta + \kappa - S(x)$

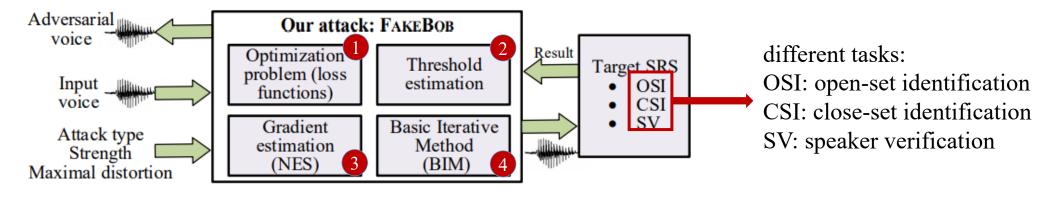


2 Threshold: specialness of SRSs

OSI:

$$D(x) = \begin{cases} \operatorname{argmax}_{i \in G} [S(x)]_i, & \text{if } \max_{i \in G} [S(x)]_i \ge \theta \\ i \in G \\ \text{reject}, & \text{otherwise.} \end{cases} \qquad SV:$$

$$D(x) = \begin{cases} \text{accept} & \text{if } S(x) \ge \theta \\ \text{reject} & \text{otherwise.} \end{cases}$$



2 Threshold: specialness of SRSs

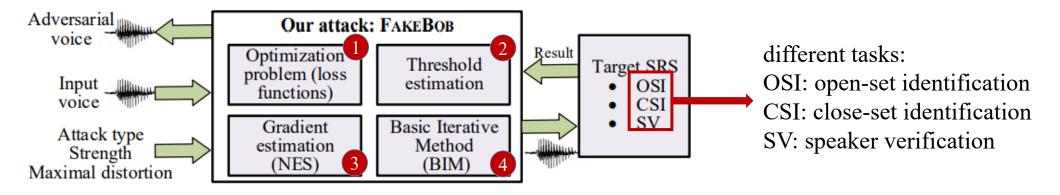
OSI:

$$D(x) = \begin{cases} \operatorname{argmax}_{i \in G} [S(x)]_i, & \text{if } \max_{i \in G} [S(x)]_i \ge \theta \\ i \in G \\ \text{reject}, & \text{otherwise.} \end{cases} \qquad SV:$$

$$D(x) = \begin{cases} \text{accept} & \text{if } S(x) \ge \theta \\ \text{reject} & \text{otherwise.} \end{cases}$$

 $\geq \theta$: attack succeeds

 $< \theta$: attack fails



2 Threshold: specialness of SRSs; unknown to attacker

OSI:

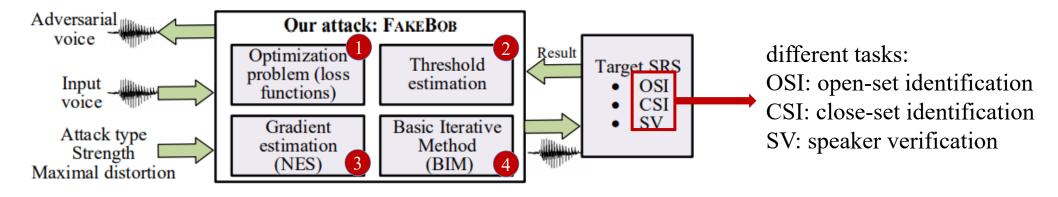
$$D(x) = \begin{cases} \operatorname{argmax}_{i \in G} [S(x)]_i, & \text{if } \max_{i \in G} [S(x)]_i \ge \theta; \\ i \in G \\ \text{reject}, & \text{otherwise.} \end{cases}$$

$$SV:$$

$$D(x) = \begin{cases} \text{accept} & \text{if } S(x) \ge \theta; \\ \text{reject} & \text{otherwise.} \end{cases}$$

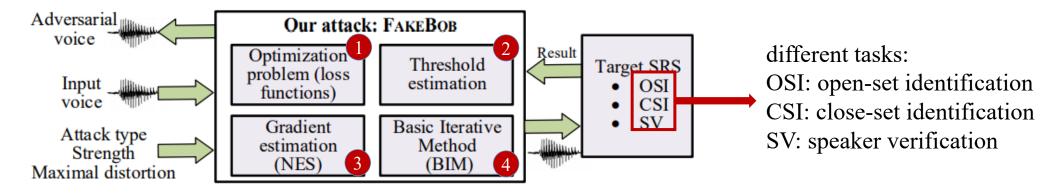
 $\geq \theta$: attack succeeds

 $< \theta$: attack fails



2 Threshold: specialness of SRSs; unknown to attacker

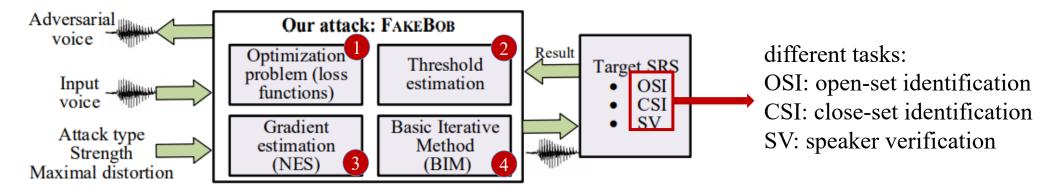
Novel threshold estimation algorithm



2 Threshold: specialness of SRSs; unknown to attacker

Novel threshold estimation algorithm

 $f(x) = \max\{\theta, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t$

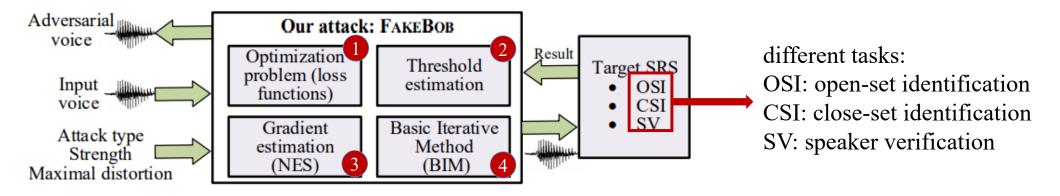


2 Threshold: specialness of SRSs; unknown to attacker

Novel threshold estimation algorithm

$$f(x) = \max\{\theta, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t \xrightarrow{\hat{\theta} \approx \theta} f(x) = \max\{\hat{\theta}, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t$$

 $\hat{\Omega} \sim \Omega \rho_{\nu} \rho_{\nu}$



2 Threshold: specialness of SRSs; unknown to attacker

Novel threshold estimation algorithm

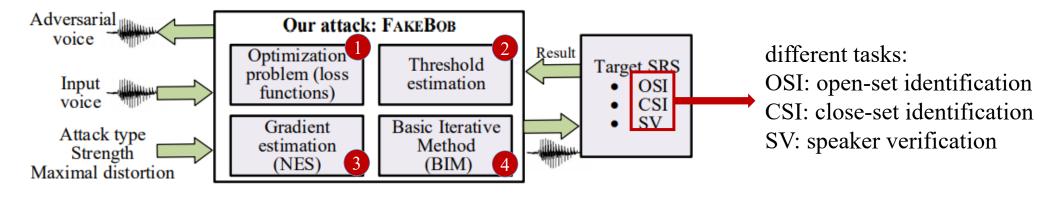
$$\hat{\theta} > \theta \&\&$$

$$\hat{\theta} \approx \theta$$

$$f(x) = \max\{\theta, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t \xrightarrow{\hat{\theta} \approx \theta} f(x) = \max\{\hat{\theta}, \max_{i \neq t} [S(x)]_i\} + \kappa - [S(x)]_t$$

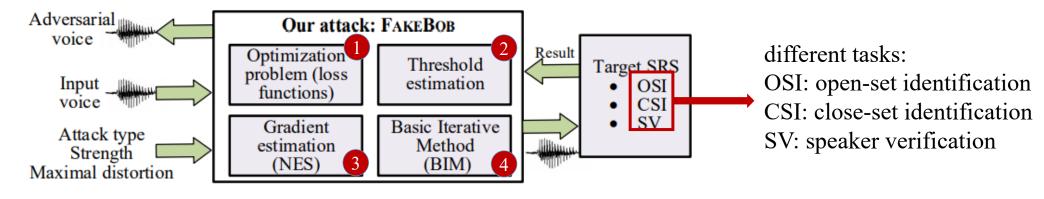
$$\hat{\theta} > \theta: \text{ make sure attack succeeds}$$

$$\hat{\theta} \approx \theta: \text{ attack not too expensive}$$



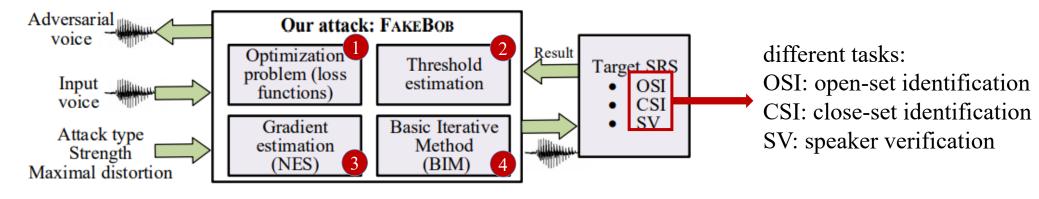
3 NES-based gradient estimation

white-box: backpropagation \rightarrow exact gradient



3 NES-based gradient estimation

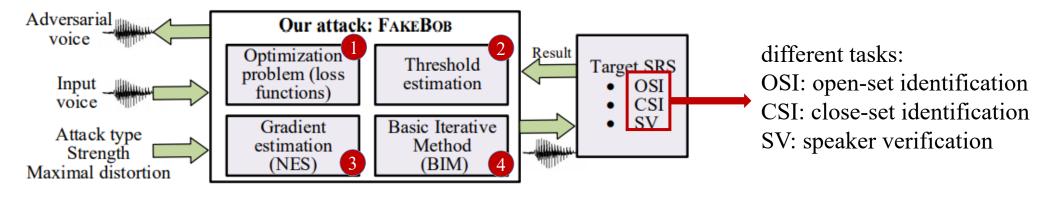
white-box: backpropagation \rightarrow exact gradient



3 NES-based gradient estimation

 \checkmark white-box: backpropagation \rightarrow exact gradient

black-box: NES-based method \rightarrow estimated gradient

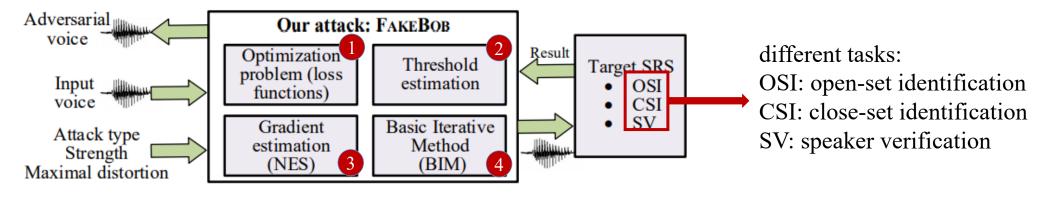


3 NES-based gradient estimation

 \checkmark white-box: backpropagation \rightarrow exact gradient

black-box: NES-based method \rightarrow estimated gradient

only rely on scores and decisions returned by victim speaker model

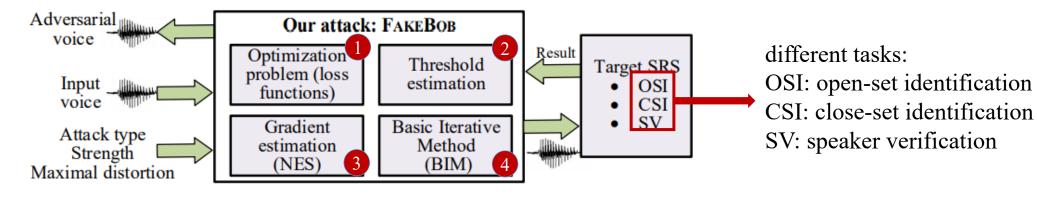


3 NES-based gradient estimation

 \checkmark white-box: backpropagation \rightarrow exact gradient

black-box: NES-based method \rightarrow estimated gradient

only rely on scores and decisions returned by victim speaker model — Black-box

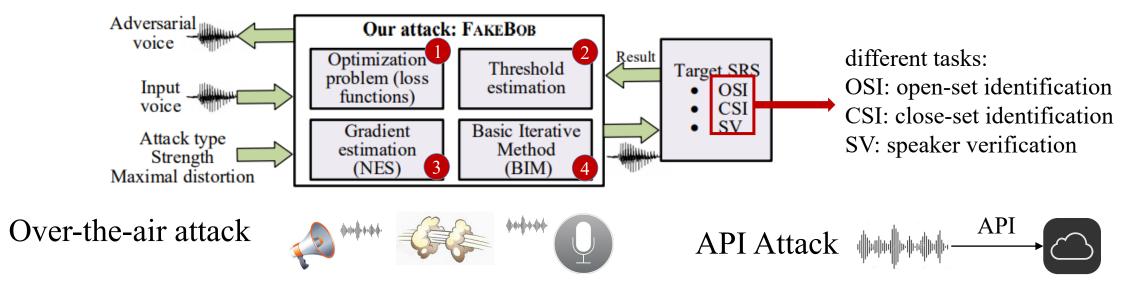


3 NES-based gradient estimation

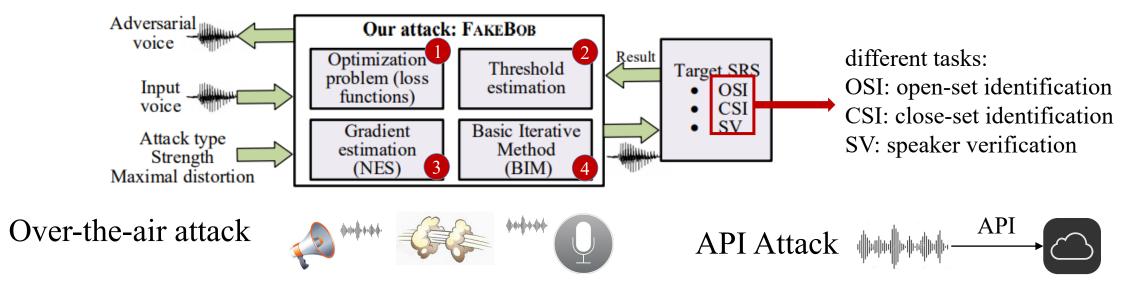
estimated gradient information

• Solve the optimization problem by gradient descent

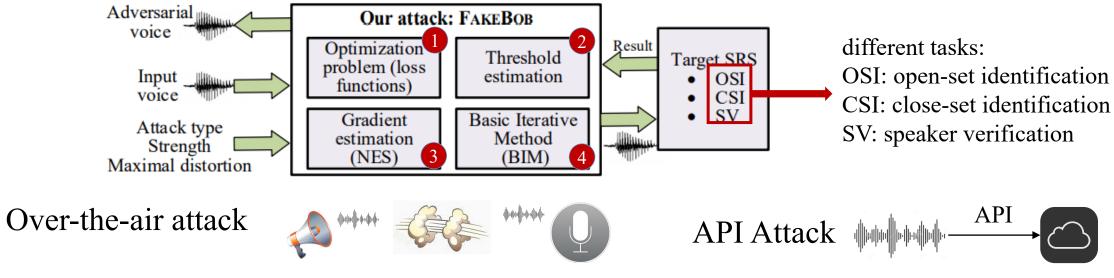
5



5

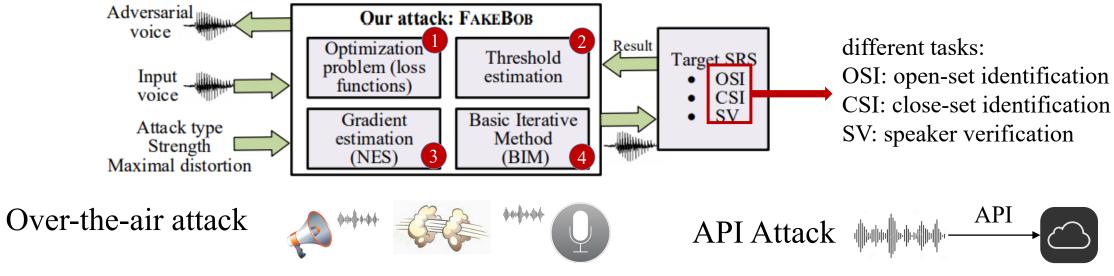


5



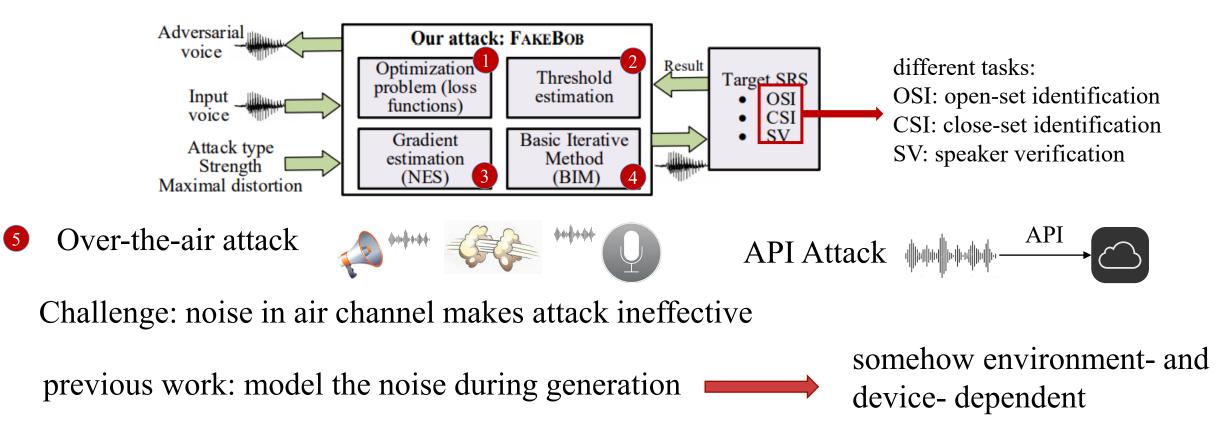
Challenge: noise in air channel makes attack ineffective

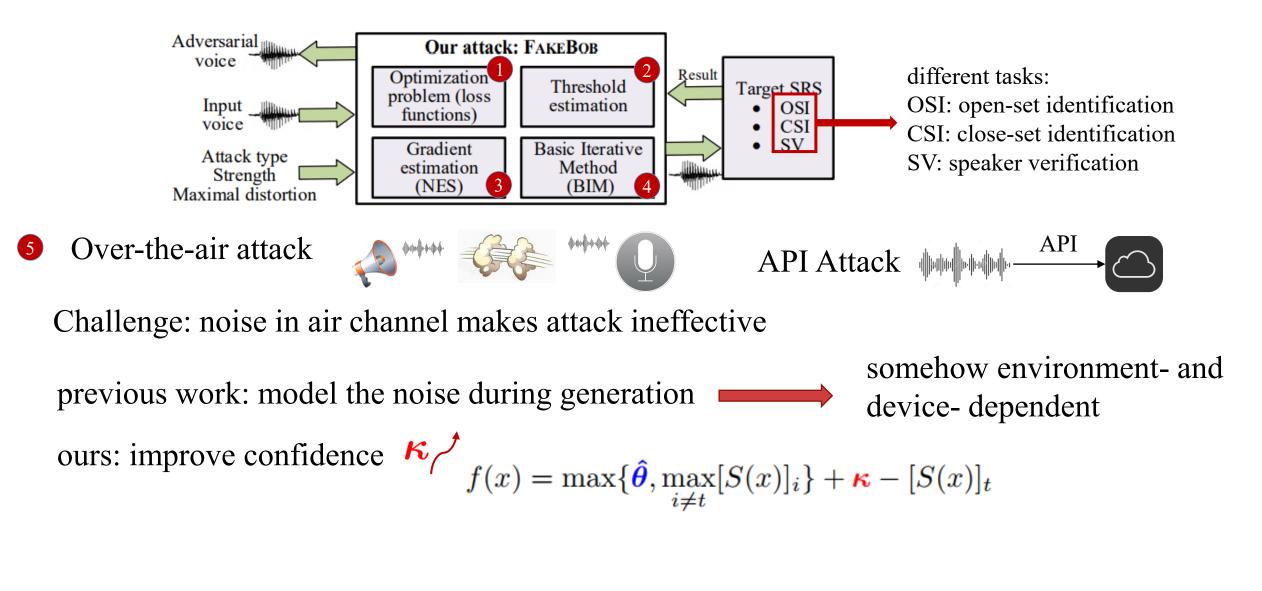
5

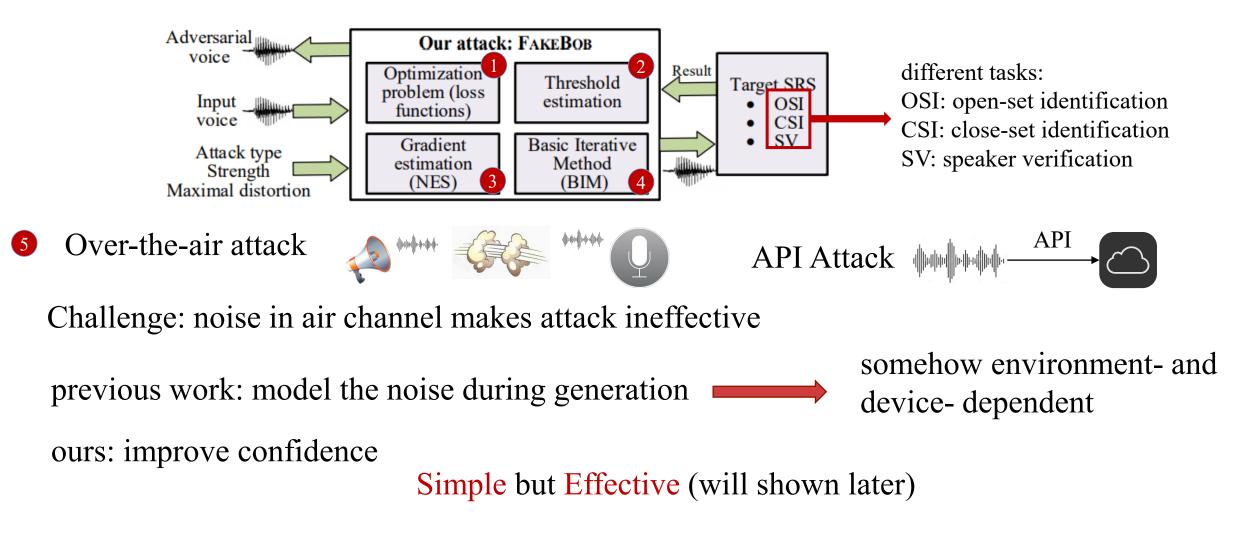


Challenge: noise in air channel makes attack ineffective

previous work: model the noise during generation







110

• $\approx 100\%$ attack success rate (ASR)

- $\approx 100\%$ attack success rate (ASR)
- Attack Commercial

- Attack Open-source **WALDI**
- Attack Commercial

Talentedsoft Talentedsoft return scores and decisions

- Attack Open-source
- Attack Commercial

• Talentedsoft return scores and decisions \rightarrow direct attack by query

- Attack Open-source **WALDI**
- Attack Commercial

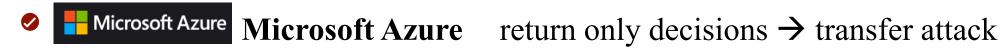
✓ Talentedsoft Talentedsoft return scores and decisions → direct attack by query 100% ASR; 2500 query on average

- Attack Open-source **WALDI**
- Attack Commercial

✓ TalentedSoft TalentedSoft return scores and decisions → direct attack by query 100% ASR; 2500 query on average

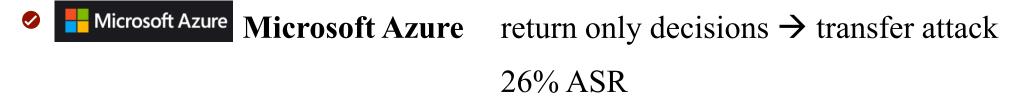
- Attack Commercial

✓ TalentedSoft TalentedSoft return scores and decisions → direct attack by query 100% ASR; 2500 query on average



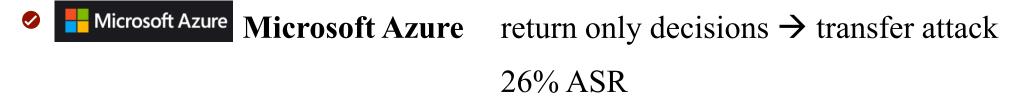
- Attack Commercial

✓ Talentedsoft Talentedsoft return scores and decisions → direct attack by query 100% ASR; 2500 query on average



- Attack Commercial

✓ Talentedsoft Talentedsoft return scores and decisions → direct attack by query 100% ASR; 2500 query on average



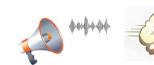
Over the air Attack

• Over the air Attack

 different distance between loundspeaker and microphone

Distance (meter)	0.25	0.5	1	2	4	8
ASR (%)	100	100	100	70	40	10

• Over the air Attack



 different distance between loundspeaker and microphone

Distance (meter)	0.25	0.5	1	2	4	8
ASR (%)	100	100	100	70	40	10

Different devices (at least 70% ASR)

Loundspeaker:

JBL portable speaker

Shinco broadcast equipment

• Over the air Attack

 different distance between loundspeaker and microphone

Distance (meter)	0.25	0.5	1	2	4	8
ASR (%)	100	100	100	70	40	10

Different devices (at least 70% ASR)

Loundspeaker:

JBL portable speaker

Shinco broadcast equipment

Microphone:

• Over the air Attack

 different distance between loundspeaker and microphone

Distance (meter)	0.25	0.5	1	2	4	8
ASR (%)	100	100	100	70	40	10

Different devices (at least 70% ASR)

Loundspeaker:

JBL portable speaker

Shinco broadcast equipment

Microphone:

Device independent

Over the air Attack

 different distance between loundspeaker and microphone

Distance (meter)	0.25	0.5	1	2	4	8
ASR (%)	100	100	100	70	40	10

different acoustic environments
 White / Bus / Restaurant / Music noise
 at least 48% ASR when noise < 60 dB

Environment independent

Different devices (at least 70% ASR)

Loundspeaker:

JBL portable speaker

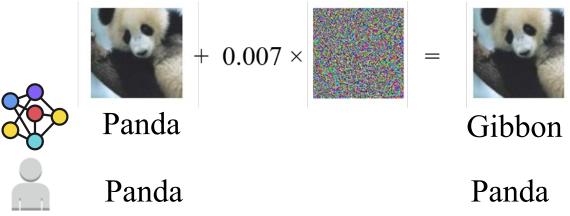
Shinco broadcast equipment

Microphone:

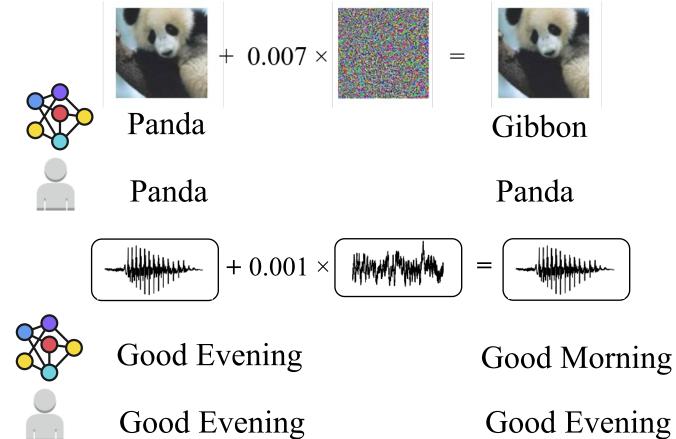
Device independent

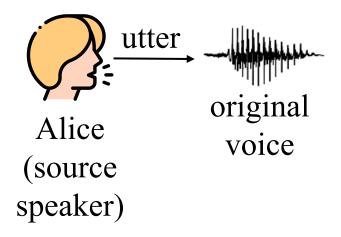
Imperceptibility has different meaning in different domains

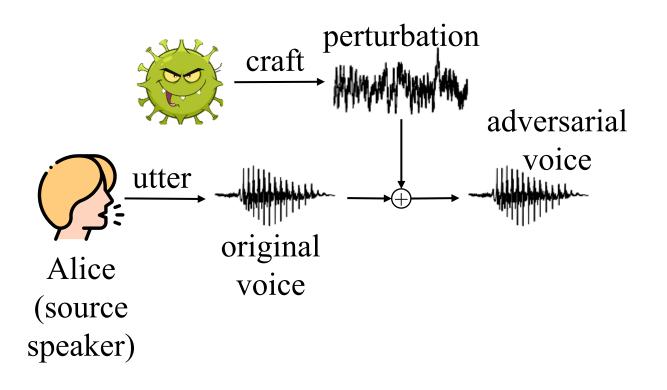
Imperceptibility has different meaning in different domains

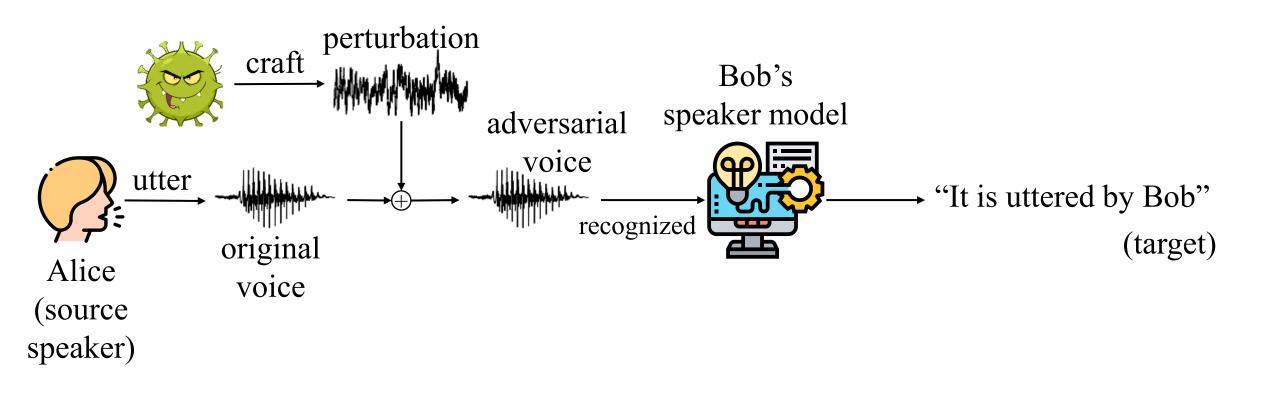


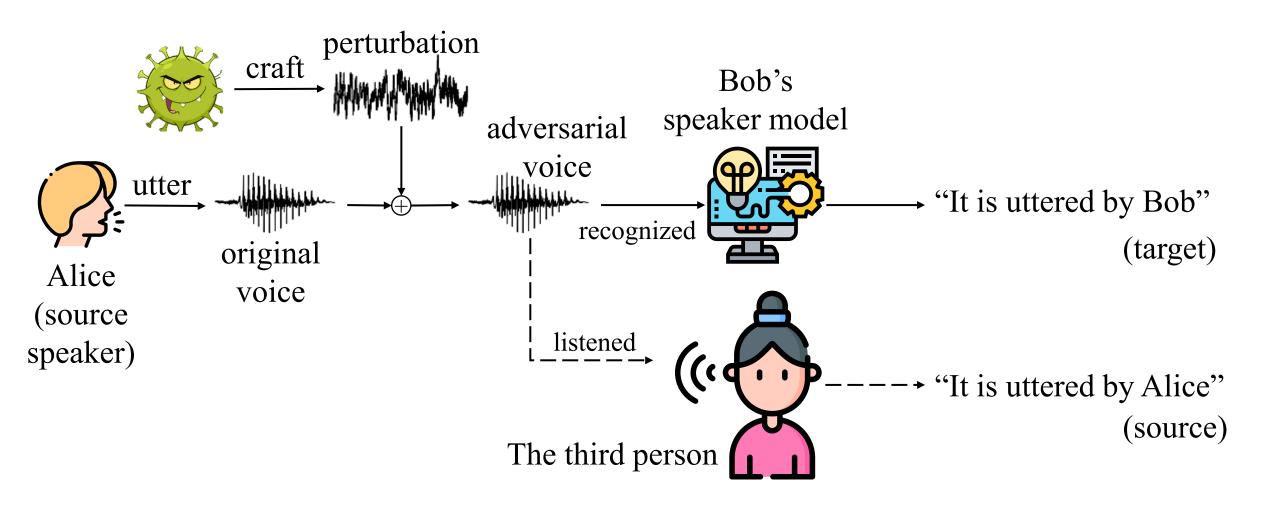
Imperceptibility has different meaning in different domains













quantitative analysis of imperceptibility

quantitative analysis of imperceptibility

Q: How many people think adversarial and original voices are uttered by the same speaker ?

quantitative analysis of imperceptibility

Q: How many people think adversarial and original voices are uttered by the same speaker ?

A: Human Study on Amazon MTurk

quantitative analysis of imperceptibility

Q: How many people think adversarial and original voices are uttered by the same speaker ?

A: Human Study on Amazon MTurk

API attack: 64.9% same

quantitative analysis of imperceptibility

Q: How many people think adversarial and original voices are uttered by the same speaker ?

A: Human Study on Amazon MTurk

API attack: 64.9% same

• Over-the-air attack: 34.0% same

quantitative analysis of imperceptibility

Q: How many people think adversarial and original voices are uttered by the same speaker ?

A: Human Study on Amazon MTurk

API attack: 64.9% same

• Over-the-air attack: 34.0% same

Take away:

- 1. Black-box and practical adversarial attack against speaker recognition systems
- 2. Effective to commercial speaker recognition services
- 3. Effective in over-the-air attack
- 4. Imperceptible to human hearing

S3L Lab WeChat QR Code

()

FAKEBOB Website:

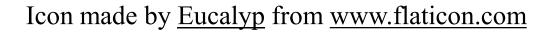
https://sites.google.com/view/fakebob/home

FAKEBOB Code:

https://github.com/FAKEBOB-adversarial-attack/FAKEBOB

System and Software Security Lab (S3L), ShanghaiTech University: <u>http://s3l.shanghaitech.edu.cn/</u>

Icon made by Freepik from www.flaticon.com



Icon made by <u>xnimrodx</u> from <u>www.flaticon.com</u>

Icon made by Becris from www.flaticon.com

Take away:

- 1. Black-box and practical adversarial attack against speaker recognition systems
- 2. Effective to commercial speaker recognition services
- 3. Effective in over-the-air attack
- 4. Imperceptible to human hearing

S3L Lab WeChat QR Code

()

FAKEBOB Website:

https://sites.google.com/view/fakebob/home

FAKEBOB Code:

https://github.com/FAKEBOB-adversarial-attack/FAKEBOB

System and Software Security Lab (S3L), ShanghaiTech University: <u>http://s3l.shanghaitech.edu.cn/</u>

