

QFA2SR: Query-Free Adversarial Transfer Attacks to Speaker Recognition Systems

Guangke Chen, Yedi Zhang, Zhe Zhao, Fu Song 🖂

<u>Guangke Chen</u>: https://guangkechen.site Fu Song: songfu1983@gmail.com

identity verification in banks' telephone-communication

Citi Uses Voice Prints To Authenticate Customers Quickly And Effortlessly

What is TD VoicePrint and how do I enroll?

TD VoicePrint is a voice recognition security technology we can use to verify your identity whenever you call us. Your voiceprint, like your fingerprint, is unique to you – no one else has a voice just like you.

Enroll today

- Call Live Customer Service 1-888-751-9000
- Request to enroll in TD VoicePrint
- The customer service representative will get you set up

Citi Bank

TD Bank

password-free payment

Customer	"Tmall Genie, I'd like to order a mobile refill card."
Genie	"Master, I would recommend China Mobile's refill card. The total price is 100 RMB. It will be delivered to (address). May I place the order for you?"
Customer	"Yes, please place the order."
Genie	"Sure! In order to proceed, let us do voice authentication first. Please keep quiet around, and after the 'beep', say 'Tmall Genie, 2065." (Here 2065 is the authentication code randomly generated by the system.)
Customer	"2065".
Genie	"Alipay discount is applied. If you want to know the delivery status, you can let me know by saying 'Tmall Genie, tracking information.""

access control in smart home, smartphones, and mobile applications

The applications of Junlin's voiceprint recognition solutions on Smart Household Appliances can realize user permission management to distinguish different family members' permission to different appliances. For example, the parents could be able to control all appliances, while the children can only control the appliances inliving room and children's room, which makes it easy, convenient, safe and comfortable to control the whole house by voice.

Home > News >

Dragon ID from Nuance Uses Voiceprint to Unlock Phones

Article Comments

WeChat Voiceprint Enabled	
Log in via Voiceprint	

key-word detection of voice assistants

Teach Google Assistant to recognize your voice with Voice Match

When you turn on Voice Match, you can teach Google Assistant to recognize your voice so it can verify who you are before it gives you personal results. You can turn on Voice Match for a

What Is Alexa Voice ID?

Alexa voice ID helps Alexa recognize you when you speak and provide a personalized experience.

Set up voice recognition and Personal Requests

When you set up voice recognition, Siri can recognize multiple voices, so that everyone in your home can enjoy personalized music and media. When you set up Personal Requests, you can do even more with voice recognition—like send and read messages, check your calendar, make phone calls, and more.

Motivation:

White-box: unpractical Query-based black-box: charges; frequency limit; no exposed query APIs

Threat model: Black-box & Query-free

Motivation:

White-box: unpractical Query-based black-box: charges; frequency limit; no exposed query APIs

Threat model: Black-box & Query-free

Solution:

Leverage transferability

Motivation:

White-box: unpractical Query-based black-box: charges; frequency limit; no exposed query APIs

Threat model: Black-box & Query-free

Solution:

Leverage transferability

Challenge:

Transferability of speech adversarial examples is extremely low

-	-	0.3	0.5	1.6	1.5	0.9	0.2					
4.8	1.2	-	-	3.9	1.5	2.2	0.5					
0.6	0	0	0	-	-	0.9	0.3					
0.9	0.1	0.2	0	1.8	0.2	-	-					

Transfer rate

same architecture, training dataset, acoustic feature, scoring method

Our attack: three approaches to enhance transferability

■ targeted attack on open-set identification:

$$\begin{array}{ll} \mbox{cross entropy} \longrightarrow f_{\rm CE}(x) = -\log[{\tt Softmax}(S(x))]_t & f_1(x) = -[S(x)]_t \\ \mbox{margin loss} \longrightarrow f_{\rm M}(x) = \max_{i \in G, i \neq t} [S(x)]_i - [S(x)]_t & x: \mbox{voice} \\ f_2(x) = \max\{\theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t & x: \mbox{voice} \\ f_2(x) = \max\{\theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t & x: \mbox{voice} \\ \mbox{threshold-based decision-making} & f_1(x) = -[S(x)]_t \\ f_2(x) = \max\{\theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t & x: \mbox{voice} \\ \mbox{S(x): score vector} \\ \mbox{t: target speaker} \\ \mbox{G: group of enrolled speakers} \end{array}$$

■ targeted attack on open-set identification:

cross entropy
$$\rightarrow f_{CE}(x) = -\log[Softmax(S(x))]_t$$

margin loss $\rightarrow f_M(x) = \max_{i \in G, i \neq t} [S(x)]_i - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
threshold-based decision-making
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
threshold-based decision-making
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]_t$
 $f_2(x) = \max\{\Theta, \max_{i \in G, i \neq t} [S(x)]_i\} - [S(x)]$

untargeted attack on open-set identification:

$$\begin{array}{ll} \mbox{cross entropy} \rightarrow f^s_{\rm CE}(x) = -\log[{\tt Softmax}(S(x))]_s & x: \mbox{void} \\ f^s_2(x) = \max\{\theta, \max_{i \in G, i \neq s}[S(x)]_i\} - [S(x)]_s & S(x): \\ \mbox{margin loss} \rightarrow f^s_{\rm M}(x) = \max_{i \in G, i \neq s}[S(x)]_i - [S(x)]_s & s: \mbox{argin} \\ f^s_1(x) = -[S(x)]_s & f_3(x) = \theta - \max_{i \in G}[S(x)]_i & G: \mbox{grow} \\ \end{array}$$

x: voice S(x): score vector s: $argmax_i [S(x_0)]_i$ G: group of enrolled speakers

untargeted attack on open-set identification:

$$\begin{array}{ll} \mbox{cross entropy} \rightarrow f^s_{CE}(x) = -\log[\mbox{Softmax}(S(x))]_s & x: \mbox{voice} \\ f^s_2(x) = \max\{\theta, \max_{i \in G, i \neq s}[S(x)]_i\} - [S(x)]_s & x: \mbox{voice} \\ f^s_2(x) = \max\{\theta, \max_{i \in G, i \neq s}[S(x)]_i\} - [S(x)]_s & x: \mbox{voice} \\ f^s_1(x) = \max_{i \in G, i \neq s}[S(x)]_i - [S(x)]_s & x: \mbox{voice} \\ S(x): \mbox{score vector} \\ s: \mbox{argmax}_i [S(x_0)]_i \\ f^s_1(x) = -[S(x)]_s & f_3(x) = \theta - \max_{i \in G}[S(x)]_i \\ \end{array}$$

Image is the best;
margin loss is the worst

$$f_{\texttt{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

$$f_{\texttt{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

Two ensemble strategies:

• dynamic weights selection

$$f_{\texttt{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

Two ensemble strategies:

• dynamic weights selection

uniform weight
$$w_k = \frac{1}{K}$$
 for $k = 1, \cdots, K$

$$f_{\text{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

Two ensemble strategies:
• dynamic weights selection
(Norm weight) $w_k = \frac{1}{K}$ for $k = 1, \dots, K$
(PLDA; $[-\infty, +\infty]$)
(PLDA; $[-\infty, +\infty]$)
(PLDA; $[-\infty, +\infty]$)
($F_K = 0.5$]
(cosine; $[-1, +1]$)

$$f_{\text{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

Two ensemble strategies:
• dynamic weights selection
(Note that in the selection)
(Note that is a selection)
(PLDA; [-\omega, +\infty])
(PLDA; [-\omega, +\infty])
(Cosine; [-1, +1])
(Cosine; [-1, +1])

dynamic weight:

surrogate-specific; iteratively updated $f_{\texttt{ens}} \leftarrow f_{\texttt{ens}} + \frac{f_k - \mu_k}{\sqrt{\sigma_k}}$ $(r_k - \mu_k)^2 - \sigma_k$

$$\mu_k \leftarrow \mu_k + \frac{f_k - \mu_k}{n}; \ \mathbf{\sigma}_k \leftarrow \mathbf{\sigma}_k + \frac{1}{n}((f_k))$$

$$f_{\texttt{ens}} = \sum_{k=1}^{K} w_k \times f(x; R_k)$$

Two ensemble strategies:

• dynamic weights selection

$$\bigotimes$$
 uniform weight $w_k = \frac{1}{K}$ for $k = 1, \cdots, K$

O dynamic weight:

A surrogate-specific; iteratively updated

$$f_{\text{ens}} \leftarrow f_{\text{ens}} + \frac{f_k - \mu_k}{\sqrt{\sigma_k}} \qquad \mu_k \leftarrow \mu_k + \frac{f_k - \mu_k}{n}; \ \sigma_k \leftarrow \sigma_k + \frac{1}{n}((f_k - \mu_k)^2 - \sigma_k)$$

Table 22: The effectiveness of SRS ensemble for \mathcal{A}_{0SI}^{T} .

T	I	V	ECAPA		XV-P		XV-C		Res18-I		Res18-V		Res34-I		Res34-V		Auto	
S	ASR_t -s	ASR_t -d	ASR_t -s	ASR_t -d	ASR _t -s	ASR_t -d	ASR_t -s	ASR_t -d										
Best-single	11.9	6.7	47.1	39.8	39.1	23.7	5.8	3.4	4.8	1.2	0.6	0.5	3.9	1.5	2.2	0.5	2.2	3.8
Uniform-Ens (w/o T)	21.7	15	58	52.7	47.5	27.2	13.4	8.1	3.3	0	0	0	7.8	4.6	6.7	3.2	6.5	4.6
Dynamic-Ens (w/o T)	19.7	14	66.6	60	64.6	49.4	12.3	6.8	24.3	11.5	13.8	6.5	30.2	22.1	34.5	21.3	23.9	18.1

Note: (1) S and T denote the surrogate and target SRSs, respectively. (2) Best single denotes the surrogate SRS that leads to the largest ASR_t , which varies with the target. (3) "W/o T" means that all the SRSs except the target are used as surrogate.

dynamic weight dominates uniform weight

Two ensemble strategies:

- dynamic weights selection
- Global score ranking

untargeted attack on open-set identification:

$$f_3(x) = \theta - \max_{i \in G} [S(x)]_i$$

x: voiceS(x): score vectorG: group of enrolled speakers

local score rank differs $\rightarrow i$ differs \rightarrow inconsistent optimize directions

Two ensemble strategies:

- dynamic weights selection
- Global score ranking

untargeted attack on open-set identification:

$$f_3(x) = \theta - \max_{i \in G} [S(x)]_i$$

x: voiceS(x): score vectorG: group of enrolled speakers

local score rank differs $\rightarrow i$ differs \rightarrow inconsistent optimize directions

Define global score rank to aggregate local ranks by voting or summation

Two ensemble strategies:

- dynamic weights selection
- Global score ranking

untargeted attack on open-set identification:

$$f_3(x) = \theta - \max_{i \in G} [S(x)]_i$$

x: voiceS(x): score vectorG: group of enrolled speakers

local score rank differs $\rightarrow i$ differs \rightarrow inconsistent optimize directions

Define global score rank to aggregate local ranks by voting or summation

use randomized modifications functions to simulate and approximate the decision boundary of unknow target

randomized modifications functions

Time-domain
$$x \longrightarrow time-domain function \longrightarrow time-domain function x$$

Reverberation-distortion (RD): convolve x with Room Impulse Response

Noise-flooding (NF): add Gaussian noise to x

Speed-alteration (SA): $\uparrow\uparrow$ or $\downarrow\downarrow$ speed of x

Chunk-dropping (CD): drop partial chunks of *x*

Frequency-dropping (FD): drop some frequency components of *x*

use randomized modifications functions to simulate and approximate the decision boundary of unknow target

Time-warping (TW): scale "image" A1 from $P \times F$ to $w \times F$, scale A2 from $(T - P) \times F$ to $(T - w) \times F$, w is randomly chosen

Time-masking (TM): zero mask random consecutive frames along the time-axis

Frequency-masking (FM): zero mask random consecutive channels along the frequency-axis

use randomized modifications functions to simulate and approximate the decision boundary of unknow target

randomized modifications functions

- Time-domain
- Frequency-domain
- Serial or parallel combinations

Table 19: ASR_t of time-freq corrosion in \mathcal{A}_{OSI}^{T} , where Para denotes RD+NF||SA+CD+FD||TW+TM+FM.

	Raseline				Sin	gle				Parallel			
	Dasenne	RD	NF	SA	CD	FD	TW	TM	FM	RD+NF	SA+CD+FD	TW+TM+FM	Para
Same-enroll	39.1	52.2	59	53.9	57.7	46.8	40.8	43	52.7	62	72.6	57.6	78.4
Differ-enroll	23.7	36.3	40.6	38.1	36.1	31	26.3	27.8	35.6	45.5	53.9	37.4	64.1

Each single function: 1 serial combination: 11 parallel combination: 111

QFA2SR: experiments on commercial APIs

APIs: Microsoft Azure, iFlytek, TalentedSoft, Jingdong

■ targeted attack on open-set identification

	M	licrosoft		Talente	dSoft		IFlytek					
	ASR_t -s	ASR_t -d	SNR	PESQ	ASR_t -s	ASR _t -d	SNR	PESQ	ASR_t -s	ASR _t -d	SNR	PESQ
SirenAttack	1	2.1	8.02	1.12	1.4	1.3	10.07	1.18	0	0	8	1.12
Kenansville	0	0	16.23	1.75	0	0	16.23	1.75	0	0	16.23	1.75
FakeBob	4.2	3.1	12.23	1.22	5.0	2.4	12.50	1.23	0	0	12.16	1.24
FakeBob + 1	6.2	4.1	12.23	1.23	5.6	2.7	12.51	1.24	1.9	1.9	12.16	1.23
FakeBob + 1 2	17.5	17.2	12.22	1.24	9.3	4.7	12.22	1.24	9.1	8.8	12.22	1.24
FakeBob + 1 2 3	3.8	2.7	12.71	1.28	4.0	2.5	12.71	1.28	0.6	0.6	12.71	1.28
BIM	18.9	12.7	11.49	1.18	8.9	6.5	11.28	1.19	16	15.5	11.50	1.18
BIM + (1)	27.2	21.8	11.50	1.18	9.3	6.6	11.28	1.19	24	17.5	11.52	1.19
BIM + (1)(2)	42.8	34.2	11.29	1.18	16.9	12.5	11.29	1.18	25.9	21.6	11.29	1.18
BIM + (1) (2) (3)	89.6	82.8	10.85	1 18	40.1	27.4	10.85	1 18	46.1	39.5	10.85	1 1 8
(QFA2SR)	↑ 70.7	↑ 70.1	10.85	1.10	↑ 31.2	$ \uparrow 20.9 ^{10.}$	10.05	1.10	↑ 30.1	<u>↑</u> 24	10.85	1.10

targeted attack on text-dependent verification

	Micros	oft Azur	e	Jin	gdong	
	differ-enroll	SNR	DESO	differ-enroll	SNR	DESO
	\mathbf{ASR}_t	(dB)		\mathbf{ASR}_t	(dB)	FESQ
SirenAttack	0.49	8.97	1.15	0	10.15	1.18
Kenansville	0	20.64	2.11	0	20.64	2.11
Voice Cloning	10	-	-	40	-	-
FakeBob	0.52	13.16	1.28	8	13.32	1.28
FakeBob + 1	0.52	13.16	1.28	8	13.32	1.28
FakeBob + 1 2	16.67	13.14	1.28	11	13.14	1.28
FakeBob + 1 2 3	0.1	13.45	1.30	3	13.45	1.30
BIM	13.01	12.40	1.24	12	12.21	1.23
BIM + 1	13.01	12.40	1.24	12	12.21	1.23
BIM + $(1)(2)$	27.78	12.21	1.23	23.5	12.21	1.23
$\mathbf{BIM} + (1 \ 2 \ 3)$	61.86	11.84	1.24	66 + 26	11.84	1.24
(QTAZSK)	+0.05			20		

untargeted attack on open-set identification

M	licrosoft	Azur	e		Talented	lSoft			IFlyte	ek			
ASR_u -s	ASR _u -d	SNR	PESQ	ASR_u -s	ASR _u -d	SNR	PESQ	ASR_u -s	ASR _u -d	SNR	PESQ		
16.67	8.25	8.16	1.12	23.9	18.7	10.07	1.18	0	0	8.07	1.12		
0	0	16.97	1.8	7	4	17.58	1.84	0	0	16.66	1.77		
21.4	23	-2.84	1.14	22.9	21.9	-2.9	1.18	0	0	-2.95	1.15		
33.33	15.46	12.24	1.23	26.8	24	12.41	1.24	11.5	5.8	12.12	1.23		
33.33	15.46	12.24	1.23	26.8	24	12.41	1.24	11.5	5.8	12.12	1.23		
47.92	37.11	12.22	1.22	31	26.7	12.22	1.22	19.2	13.5	12.22	1.22		
15.42	6.41	12.55	1.27	11.7	7.2	12.55	1.27	5.0	2.7	12.55	1.27		
61.22	47.21	11.55	1.18	17.8	16.2	11.37	1.18	60	58	11.53	1.17		
68.4	50.8	11.54	1.18	22.7	19.9	11.37	1.19	64	61.9	11.54	1.18		
80.62	66.53	11.37	1.19	30.1	23.5	11.37	1.19	69	62.9	11.37	1.19		
99.49 ↑ 38.27	92.39 ↑ 45.18	11.01	1.19	55 † 28.2	39.6 ↑ 15.6	11.01	1.19	70 ↑ 10	68 ↑ 10	11.01	1.19		
	M ASR _u -s 16.67 0 21.4 33.33 37.92 15.42 61.22 68.4 80.62 99.49 ↑ 38.27	Microsoft ASR _u -s ASR _u -d 16.67 8.25 0 0 21.4 23 33.33 15.46 33.33 15.46 47.92 37.11 15.42 6.41 61.22 47.21 68.4 50.8 80.62 66.53 99.49 92.39 ↑ 38.27 ↑ 45.18	Microsoft Azur ASR _u -s ASR _u -d SNR 16.67 8.25 8.16 0 0 16.97 21.4 23 -2.84 33.33 15.46 12.24 33.33 15.46 12.24 47.92 37.11 12.22 15.42 6.41 12.55 61.22 47.21 11.55 68.4 50.8 11.54 80.62 66.53 11.37 99.49 92.39 11.01 ↑ 38.27 ↑ 45.18 11.01	Microsoft Azure ASR _u -s ASR _u -d SNR PESQ 16.67 8.25 8.16 1.12 0 0 16.97 1.8 21.4 23 -2.84 1.14 33.33 15.46 12.24 1.23 37.11 12.22 1.22 1.22 15.42 6.41 12.55 1.27 61.22 47.21 11.55 1.18 68.4 50.8 11.54 1.18 80.62 66.53 11.37 1.19 99.49 92.39 11.01 1.19	Microsoft Azure ASR _u -s ASR _u -d SNR PESQ ASR _u -s 16.67 8.25 8.16 1.12 23.9 0 0 16.97 1.8 7 21.4 23 -2.84 1.14 22.9 33.33 15.46 12.24 1.23 26.8 37.92 37.11 12.22 1.22 31 15.42 6.41 12.55 1.27 11.7 61.22 47.21 11.55 1.18 17.8 68.4 50.8 11.54 1.18 22.7 80.62 66.53 11.37 1.19 30.1 99.49 92.39 11.01 1.19 \uparrow 28.2	$\begin{array}{ c c c c c c c c c c c c } \hline \textbf{Microsoft Azure} & \textbf{Talentec} \\ \hline \textbf{ASR}_u\textbf{-s} \textbf{ASR}_u\textbf{-d} \textbf{SNR} \textbf{PESQ} \textbf{ASR}_u\textbf{-s} \textbf{ASR}_u\textbf{-d} \\ \hline 16.67 & 8.25 & 8.16 & 1.12 & 23.9 & 18.7 \\ \hline 0 & 0 & \textbf{16.97} & \textbf{1.8} & 7 & 4 \\ \hline 21.4 & 23 & -2.84 & 1.14 & 22.9 & 21.9 \\ \hline 33.33 & 15.46 & 12.24 & 1.23 & 26.8 & 24 \\ \hline 33.33 & 15.46 & 12.24 & 1.23 & 26.8 & 24 \\ \hline 47.92 & 37.11 & 12.22 & 1.22 & 31 & 26.7 \\ \hline 15.42 & 6.41 & 12.55 & 1.27 & 11.7 & 7.2 \\ \hline 61.22 & 47.21 & 11.55 & 1.18 & 17.8 & 16.2 \\ \hline 68.4 & 50.8 & 11.54 & 1.18 & 22.7 & 19.9 \\ \hline 80.62 & 66.53 & 11.37 & 1.19 & 30.1 & 23.5 \\ \hline \textbf{99.49} & \textbf{92.39} \\ \hline 38.27 & \uparrow 45.18 & 11.01 & 1.19 & \begin{matrix} \textbf{55} & \textbf{39.6} \\ \hline 28.2 & \uparrow 15.6 \\ \hline \end{array}$	TalentedSoftAsrueTalentedSoftASR $_u$ -sASR $_u$ -dSNRPESQASR $_u$ -sASR $_u$ -dSNR16.678.258.161.1223.918.710.070016.971.87417.5821.423-2.841.1422.921.9-2.933.3315.4612.241.2326.82412.4133.3315.4612.241.2326.82412.4147.9237.1112.221.223126.712.2215.426.4112.551.2711.77.212.5561.2247.2111.551.1817.816.211.3768.450.811.541.1822.719.911.3780.6266.5311.371.1930.123.511.37 99.4992.39 11.011.19 \uparrow 28.2 \uparrow 15.611.01	Microsoft AzureTalentedSoftASR _u -sASR _u -dSNRPESQASR _u -sASR _u -dSNRPESQ16.678.258.161.1223.918.710.071.180016.971.87417.581.8421.423-2.841.1422.921.9-2.91.1833.3315.4612.241.2326.82412.411.2433.3315.4612.241.2326.82412.411.2447.9237.1112.221.223126.712.221.2215.426.4112.551.2711.77.212.551.2761.2247.2111.551.1817.816.211.371.1868.450.811.541.1822.719.911.371.1980.6266.5311.371.1930.123.511.371.19 99.4992.39 11.011.19 $\uparrow 28.2$ $\uparrow 15.6$ 11.011.19	TalentedSoftASR $_u$ -sASR $_u$ -dSNRPESQASR $_u$ -sASR $_u$ -dSNRPESQASR $_u$ -s16.678.258.161.1223.918.710.071.1800016.971.87417.581.84021.423-2.841.1422.921.9-2.91.18033.3315.4612.241.2326.82412.411.2411.533.3315.4612.241.2326.82412.411.2411.547.9237.1112.221.223126.712.221.2219.215.426.4112.551.2711.77.212.551.275.061.2247.2111.551.1817.816.211.371.186068.450.811.541.1822.719.911.371.196480.6266.5311.371.1930.123.511.371.1969 99.4992.39 11.011.19 5539.6 11.011.19↑ 10	TalentedSoftIFlyteASR $_u$ -sASR $_u$ -dSNRPESQASR $_u$ -sASR $_u$ -dSNRPESQASR $_u$ -sASR $_u$ -d16.678.258.161.1223.918.710.071.18000016.971.87417.581.840021.423-2.841.1422.921.9-2.91.180033.3315.4612.241.2326.82412.411.2411.55.833.3315.4612.241.2326.82412.411.2411.55.847.9237.1112.221.223126.712.221.2219.213.515.426.4112.551.2711.77.212.551.275.02.761.2247.2111.551.1817.816.211.371.18605868.450.811.541.1822.719.911.371.196461.980.6266.5311.371.1930.123.511.371.196962.9 99.4992.39 11.011.19 5539.6 11.011.19 \uparrow 10 \uparrow 10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

1: 10%-70% transfer improvement over the most effective baseline

Azure: ≈ 90% targeted ≈ 100% untargetd Voice assistants: Google Assistant, Apple Siri, and TMall Genie

presented with a pair of voices tell if they are uttered by the same speaker

126 participants from Amazon Mechanical Turk Platform

- Normal: 2 clean voices from distinct speakers
- QFA2SR: 1 clean voice from the target speaker
 1 QFA2SR adversarial voice from imposter
- BIM: 1 clean voice from the target speaker
 1 BIM adversarial voice from imposter
- VC: 1 clean voice from the target speaker
 1 voice generated by voice cloning

QFA2SR does not worsen imperceptibility

Take away

- Query-free black-box speech adversarial examples against voiceprint recognition
- Leverage transferability
- Equipped with three approaches to boost transferability
- Highly effective against commercial APIs and voice assistants
- Negligible effect on imperceptibility
- Vulnerability disclosure receives acknowledgment or bounty award from vendors

Website (attack audios & videos): <u>https://sites.google.com/view/qfa2sr</u> Paper: <u>https://arxiv.org/abs/2305.14097</u>

Any Question? Thanks!

<u>Guangke Chen</u>: https://guangkechen.site Fu Song: songfu1983@gmail.com